Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
IETE Journal of Research ; : 1-14, 2023.
Article in English | Academic Search Complete | ID: covidwho-2254186

ABSTRACT

In any smart city and society, the citizens' mental health is one of the utmost concerns. Nowadays, people from different sectors of our community face a severe mental health threat due to the prolonged pandemic of COVID-19. Depression, anxiety, suicidal behaviours, and posttraumatic stress disorder are widespread terms nowadays for students, health care workers, jobless people, etc. And Machine Learning (ML), image processing, expert systems, Internet of Things (IoT) are performing an essential function in the significant acceleration of the automation process within the healthcare industry. Therefore, this article aims to address the problem of preventing mental health disorders by early predicting individuals using the developed web portal "Mind Turner”;and by integrating the mentioned emerging tools in this way, later chronic mental health disorders can be avoided. We used the Random Forest Classifier to detect stress levels from the Question-Answer-based assessment, and SVM is used to detect facial emotions. Finally, both are combined using Interval Type-2 Fuzzy Logic to predict the probable mental health of a person, i.e. acute depression, moderate depression and not depressed. [ FROM AUTHOR] Copyright of IETE Journal of Research is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Toxicol Appl Pharmacol ; 456: 116267, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2276966

ABSTRACT

Organophosphates (OPs) are ubiquitous environmental contaminants, widely used as pesticides in agricultural fields. In addition, they serve as flame-retardants, plasticizers, antifoaming or antiwear agents in lacquers, hydraulic fluids, and floor polishing agents. Therefore, world-wide and massive application of these compounds have increased the risk of unintentional exposure to non-targets including the human beings. OPs are neurotoxic agents as they inhibit the activity of acetylcholinesterase at synaptic cleft. Moreover, they can fuel cardiovascular issues in the form of myocardities, cardiac oedema, arrhythmia, systolic malfunction, infarction, and altered electrophysiology. Such pathological outcomes might increase the severity of cardiovascular diseases which are the leading cause of mortality in the developing world. Coronavirus disease-19 (COVID-19) is the ongoing global health emergency caused by SARS-CoV-2 infection. Similar to OPs, SARS-CoV-2 disrupts cytokine homeostasis, redox-balance, and angiotensin-II/AT1R axis to promote cardiovascular injuries. Therefore, during the current pandemic milieu, unintentional exposure to OPs through several environmental sources could escalate cardiac maladies in patients with COVID-19.


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Renin-Angiotensin System/physiology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Organophosphates , Acetylcholinesterase , Peptidyl-Dipeptidase A/metabolism , Inflammation/chemically induced , Cardiovascular Diseases/chemically induced , Oxidative Stress
3.
ACS Appl Bio Mater ; 6(2): 652-662, 2023 02 20.
Article in English | MEDLINE | ID: covidwho-2185491

ABSTRACT

Coronavirus disease 19 (COVID-19) is the ongoing global health emergency caused by SARS-CoV-2 infection. The virus is highly contagious, affecting millions of people worldwide. SARS-CoV-2, with its trimeric spike glycoprotein, interacts with the angiotensin-converting enzyme 2 (ACE2) receptor and other co-receptors like basigin to invade the host cell. Moreover, certain host proteases like transmembrane serine proteases, furin, neuropilin 1 (NRP1), and endosomal cathepsins are involved in the priming of spike glycoproteins at the S1/S2 interface. This is critical for the entry of viral genome and its replication in the host cytoplasm. Vaccines and anti-SARS-CoV-2 drugs have been developed to overcome the infection. Nonetheless, the frequent emergence of mutant variants of the virus has imposed serious concerns regarding the efficacy of therapeutic agents, including vaccines that were developed for previous strains. Thus, screening and development of pharmaceutical agents with multi-target potency could be a better choice to restrain SARS-CoV-2 infection. Madecassic acid (MDCA) is a pentacyclic triterpenoid found in Centella asiatica. It has multiple medicinal properties like anti-oxidative, anti-inflammatory, and anti-diabetic potential. However, its implication as an anti- SARS-CoV-2 agent is still obscure. Hence, in the present in silico study, the binding affinities of MDCA for spike proteins, their receptors, and proteases were investigated. Results indicated that MDCA interacts with ligand-binding pockets of the spike receptor binding domain, ACE2, basigin, and host proteases, viz. transmembrane serine proteinase, furin, NRP1, and endosomal cathepsins, with greater affinities. Moreover, the MDCA-protein interface was strengthened by prominent hydrogen bonds and several hydrophobic interactions. Therefore, MDCA could be a promising multi-target therapeutic agent against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Triterpenes , Humans , Angiotensin-Converting Enzyme 2 , Basigin , Cathepsins , COVID-19/prevention & control , Furin , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Triterpenes/pharmacology , COVID-19 Drug Treatment , Computer Simulation
4.
Toxicology and applied pharmacology ; 2022.
Article in English | EuropePMC | ID: covidwho-2058349

ABSTRACT

Organophosphates (OPs) are ubiquitous environmental contaminants, widely used as pesticides in agricultural fields. In addition, they serve as flame-retardants, plasticizers, antifoaming or antiwear agents in lacquers, hydraulic fluids, and floor polishing agents. Therefore, world-wide and massive applications of these compounds have increased the risk of unintentional exposure to non-targets including the human beings. OPs are neurotoxic agents as they inhibit the activity of acetylcholine esterase at synaptic cleft. Moreover, they can fuel cardiovascular issues in the form of myocardities, cardiac oedema, arrhythmia, systolic malfunction, infarction, and altered electrophysiology. Such pathological outcomes might increase the severity of cardiovascular diseases which are the leading cause of mortality in the developing world. Coronavirus disease-19 (COVID-19) is the ongoing global health emergency caused by SARS-CoV-2 infection. Similar to OPs, SARS-CoV-2 disrupts cytokine homeostasis, redox-balance, and angiotensin-II/AT1R axis to promote cardiovascular injuries. Therefore, during the current pandemic milieu, unintentional exposure to OPs through several environmental sources could escalate cardiac maladies in patients with COVID-19. Graphical Unlabelled Image

SELECTION OF CITATIONS
SEARCH DETAIL